

X線結像光学ニューズレター

No. 47 2018年4月発行

軟 X 線自由電子レーザービームライン SACLA BL1

高輝度光科学研究センター 大和田 成起

1. はじめに

大型放射光施設 SPring-8 サイト内に建設された X 線自由電子レーザー (X-ray Free Electron Laser: XFEL) SACLA は、世界初のコンパクト XFEL とし て硬 X 線の FEL ビームライン BL3 を軸に、2012 年 3月にユーザー運転を開始し、続く2015年4月には 2本目の硬 X 線 FEL ビームライン BL2 の利用が開 始された [1]。さらに 2017 年9月からは、電子ビー ム高速振り分け運転による BL2・BL3 の同時利用が 可能になるなど、さらなる XFEL 利用の拡大へ向け た取り組みが続けられている [2]。その一方で、軟X 線領域の FEL も利用可能とするために、我々は SCSS 試験加速器 [3] を増強しながら SACLA 光源 棟へ移設し、軟 X 線 FEL 専用加速器 (SCSS+) とし て整備した。そして 2016 年 7 月からは、軟 X 線 FEL ビームライン BL1 [4] の本格的なユーザー運転が開 始され、SACLAは2つの独立したFELが同時に稼 働する世界初の施設となった。本稿では、SACLA BL1の現状について報告する。

2. 軟X線FELの構成

2.1. 光源

長尺アンジュレータを収納する SACLA 光源棟内 には、BL1振り分け部に上流約100mの空きスペー スが存在した。ここに、別の建屋に設置されていた SCSS 試験加速器を移設し (図1)、さらに、3台のC バンド加速ユニットを追加した。この結果、現在 (2018年2月) では合計5台の加速ユニットで運転 しており、最大電子ビームエネルギーは試験加速器 時の 250 MeV から約 800 MeV へと増加した。この 下流には、C バンド加速器を更に最大で 6 台追加で きるだけのスペースがあり、将来的にはさらに高エ ネルギー領域にて運転することも可能である。6 台 の加速ユニットを追加した場合、電子ビームエネル ギーは 1.7 GeV 程度まで増加し、このとき光子エネ ルギーは K値 2.1 で約 470 eV、K値 1.5 では約 710 eV が見込まれる。

図 1 SACLA アンジュレータホール図

2.2. 光ビームライン

BL1 のビームラインには、光学ハッチ内にアライ メント用の YAG スクリーン、ガス強度モニターや ガスアッテネーター、基本波と高調波を選別するた めの金属薄膜フィルターなどがインストールされて いる (図 2)。これらのビームライン機器は、BL2/3 と同様に実験ステーションの端末からGUI等を通じ て、各ユーザーが操作することが可能である。

ビームライン最下流部には実験ステーションを設 置し、波長可変フェムト秒同期レーザーシステムお よびKB集光ミラーを基幹実験装置として常設した。 直径 200 µm の金ワイヤーによるナイフエッジスキ ャン法による測定では、光子エネルギー120 eV にお ける集光ビームサイズは約5 µm (FWHM)となって いる。

また、FEL と同期レーザーの到着時間ジッターを 測定するためのタイミングモニターの開発が進めら れており [5]、2018 年 5 月末には、ビームラインへ のインストールとコミッショニングを開始する予定 である。

図 2 ビームライン概略図

2.3. 光性能

2018 年 2 月現在では、アンジュレータ K 値 (1.5 から 2.1) と、500 MeV から 800 MeV までの電子ビ ームエネルギーの組み合わせにより、光子エネルギ ーとして 40 eV から 150 eV 程度の範囲が利用可能 となっている。光子エネルギー100 eV (電子ビーム エネルギー: 800 MeV、K 値: 2.1) においては、 実 験ホール内にてパルスエネルギー約 80 µJ、FWHM バンド幅約 2 eV の FEL 出力となっている。パルス エネルギーはビームラインに常設のガス強度モニタ ーで計測を行ない、モニターの較正には、産総研で 開発された常温型カロリーメーター [6] を使用した。 またスペクトロメーターは、He ランプおよびアルミ ニウムのL吸収端により較正したものを用いた。

図3に示すように、高調波のパルスエネルギーは、 100 eV において基本波の0.3 %程度となっている。 2.2.節で述べたように、金属薄膜フィルターとガスア ッテネーターを組み合わせることで、3 次高調波を 取り出すことが可能となっている。例えば基本波が 100 eV のときでは、KB ミラー後で数+nJ の3次 光が利用できる。

図 3 パルスエネルギーのガスアッテネーター圧力 依存性

3. ビームラインの利用状況

現在 BL1 では、原子・分子・光科学 (AMO) 分野 を中心に、物質科学、EUV リソグラフィのための基 礎研究などの分野の実験が行われている。また、前 述したタイミングモニターや回転楕円ミラーを用い た sub-um 集光装置 [7] など、ビームライン高度化 のための開発も継続して行われている。各ユーザー の実験は、真空チャンバーのベーキングなど超高真 空実験のための準備時間と、5 から7 シフト程度の ビームタイム (1 シフト = 12 時間) を併せて、1 課 題あたり 1 週間前後のサイクルで行われていること が多い。

4. まとめ

SACLA BL1 は、2016 年 7 月より軟 X 線 FEL の 利用運転を開始した。ユーザー運転と並行して、加 速器や光ビームライン高度化のための研究・開発も 続けられている。本ビームラインの最新の情報は、 SACLA ホームページ (http://xfel.riken.jp) を通じて 随時発信していくので、参照されたい。 謝辞

本プロジェクトは、理化学研究所放射光科学総合 研究センターと高輝度光科学研究センターを中心と するタスクフォースによって実施された。

参考文献

- [1] T. Ishikawa et al., Nat. Photon. 6 (2012) 540.
- [2] T. Hara *et al.*, *Phys. Rev. Accl. Beams* **19** (2016) 020703.
- [3] T. Shintake et al., Nat. Photon. 2 (2008) 555.
- [4] S. Owada et al., J. Synchrotron Rad. 25 (2018) 282.
- [5] S. Owada *et al.*, *J. Synchrotron Rad.* **25** (2018) 68.
- [6] T. Tanaka *et al.*, *Rev. Sci. Instrum.* **86** (2015) 093104.
- [7] H. Motoyama *et al.*, *Proc. SPIE* **10386** (2017) 1038609.

ピコ秒軟X線レーザーが起こすアブレーション

量子科学技術研究開発機構 石野 雅彦、長谷川 登、錦野 将元

1. はじめに

可視・赤外領域のレーザーパルスを固体表面に照 射するとレーザーと物質との直接的な相互作用に よってアブレーションが起こり、照射部分には穴な どの不可逆的な損傷が形成されます。このようなレ ーザーアブレーションは、機能性材料の創製や材料 分析、表面精密微細加工などにも応用することが可 能です [1]。我々は、波長 13.9 nm、パルス幅 7 ps の軟X線レーザーが起こすアブレーションについ ての研究を実施しています。図1は種々のレーザー パルスをフッ化リチウム (LiF) に照射したときの アブレーション閾値 (損傷閾値)を示しています。 図から波長13.9 nmの軟X線レーザーに対するアブ レーション閾値が、他のレーザーに比べて、格段に 低いことがわかります [2,3]。また、軟×線レーザー パルスをアルミニウム (AI) 表面に照射した時には、 図2に示す特徴的な突起状のナノ構造を内包する損 傷が部分的に出現することを見出しました [4]。

図 1 各種レーザーが示す LiF 結晶に対するアブレ ーション閾値 [2]

図 2 軟X線レーザー照射により AI 表面に出現した突起状の構造物を内包する損傷 [4]

アブレーション閾値程度の低照射フルエンスの 軟X線レーザーによって特徴的なナノ構造が形成 される過程を解明することは物理的な興味である 一方、アブレーション閾値が低いことは物を削ると いう点で効率的な加工につながる可能性あり、応用 を考える上でも重要な点となります。本稿では、軟 X線レーザーが起こすアブレーションについて、今 までに得られている実験結果と理論モデルを紹介 します。

2. アブレーション実験

本稿で述べる軟×線レーザーは、国立研究開発法 人量子科学技術研究開発機構の関西光科学研究所 で開発したレーザー生成プラズマを発振媒質とす る実験室規模のコヒーレント軟×線光源を指しま す。軟×線レーザーの発振媒質は、高強度の赤外レ ーザーパルスを銀ターゲットに照射することで生 じる銀プラズマです。2 つのプラズマ媒質をシード (発振器)と増幅器として用いることにより、高い 空間可干渉性(コヒーレンス)を実現しています。 これにより、発振波長13.9 nm、パルス幅7 psの 空間的にほぼ完全なコヒーレンスを有する軟X線 レーザーが発生します。本軟X線レーザー装置の詳 細については、文献[5-7]も参照して下さい。

図3に軟X線レーザーによるアブレーション実験 の配置図を示します。軟X線レーザーを曲率 1000 mmの Mo/Si 多層膜反射鏡によって試料表面に集光、 照射します。球面鏡は光源から約2640 mm の位置 にあり、試料表面に光源の縮小像を形成します。光 源と球面鏡の間にはガラス板または複数のジルコ ニウム (Zr) 薄膜の光学フィルターが挿入できるよ うになっており、Zrフィルターによってプラズマ光 源からの可視光成分および散乱 X 線を遮るととも に、Zrフィルターの厚さや組み合わせを変えること によって照射強度を調整します。一方、ガラス板を 挿入した場合には、軟X線レーザーはガラス板で全 て吸収され、銀プラズマから発せられる可視光成分 のみが試料表面に到達することになります。本配置 により、おおよそ 10~30 mJ/cm²程度の照射フルエ ンスでの実験が可能となっています。軟X線レーザ 一の照射実験はもちろん真空中で行われ、真空の外 からは溶融石英の窓を通して軟X線レーザーの照 射面を観察できるようにカメラを設置しています。 アブレーション実験では、このカメラを用いて照射 時のプラズマ発光の観察も試みました。

図 4 に軟 X 線 レーザーを照射した AI、金 (Au)、 シリコン (Si)の表面を観察した走査型電子顕微鏡 写真を示します [8]。図 5 には AI と Au、比較のた めの LiF に対する損傷の平均的なスケールと損傷閾 値を示します [9]。損傷の外観は球面鏡によって縮 小されたプラズマ光源部のレーザー利得領域の形 状を再現しています。AI 表面には中央部の大きな穴 状の損傷を囲むようして、照射フルエンスの低い領 域に突起状の特徴的な構造をもつ損傷が形成され ています。一方、Au の照射領域には AI の様な突起 状構造物は見られず、波状の損傷痕が確認できます。 ここには示していませんが、Cu や Ni 表面にも Au と同様の波状の損傷痕が出現します [8,10]。

図 4 軟X線レーザー照射によって Al、Au、そして Si の各表面に出現した損傷 [8]。Al および Au はシ ングルショット、Si は 10 ショット積算した後の損 傷構造

図 5 軟X線レーザーに対する各物質のアブレー ション閾値 [9]

AI 表面に現れた突起状の構造物は、実験に用いた 物質の中では AI 表面のアブレーション痕中にのみ 形成された特有の構造であり、100 nm 前後の直径 をもちます [4]。Au (Cu や Ni も含む) に現れる波状 構造物もナノメートルスケールの浅い損傷を形成 しています。AI や Au に形成されたこれらの損傷領 域の深さ方向のスケールは、20~40 nm 程度でした。

図 4 のシリコン (Si) 表面に形成された損傷構造 は、軟X線レーザーを 10 ショット積算した後に現 れたものです。Si 表面に現れた損傷構造は、先に示 した金属ターゲットのものとは全く異なっており、 溶けたような構造の中に数百 nm にもなる深い穴が 形成されています。深い穴状構造が出現する原因と して軟X線レーザーの Si への侵入長の長さが挙げ られます。すなわち、Si の内殻吸収端 (L 殻吸収端: ~ 12.4 nm) が軟X線レーザーの発振波長 (13.9 nm)の直近にあることから、吸収率が小さくなり、 その結果、侵入長が長くなります (~ 590 nm)。この ことが侵入長程度の深さを持つ穴状構造の形成に つながっていると考えられます。

以上に示したように、軟X線レーザーの照射によ って各ターゲット表面には、物質独自の構造が形成 されることが分かりました。各ターゲット表面に現 れる構造の違いは、物質の軟X線に対する吸収率や 融点、または熱伝導度などの違いが反映されている と思われます。損傷構造の観察は、アブレーション 研究の基本ですが、このような実験的手法と並んで、 理論的な研究もアブレーションを解明するための 重要な研究です。次項では、アブレーションの理論 的考察について紹介したいと思います。

3. アブレーションの理論モデル

理論計算からは軟×線レーザーのアブレーショ ン、特に閾値近傍での低アブレーションについては、 破砕的なアブレーション(スパレーション)が提案 されています [4, 11]。図6に分子動力学シミュレー ションが予測する金属に対するスパレーションモ デルの時間発展を示します [4]。軟×線レーザーの 照射(エネルギーの注入)によって、最初に表面直 下の電子系がエネルギーを受け取り、表面近傍の浅 い領域に「膨張の核」を生成します。その後、エネ ルギーは電子ーイオンー格子へと移動しするとと もに格子内の温度が上昇します。温度の上昇と共に 核が成長し、核の成長が格子の結合エネルギーを超 えると表面層が剥離し、最終的に薄い表面層が吹き 飛びます。核の成長は温度とともに上昇する内部応 カがその駆動力となっています。モデル計算による と、この核は軟X線レーザー照射中(ピコ秒)に生 成が始まると予想されており、しかも、スパレーシ ョン過程はレーザーの照射が終わった後も継続し、 一連の過程は数百 ps または数 ns にも及ぶと予測さ れています。本モデルに従うと、AI や Au 表面に形 成される複雑な形状をしたナノメートルサイズの 構造物は、表面が吹き飛んだ後に溶けた部分が固ま って形成されたと解釈できます [12]。しかし、図5 に示す実験結果は計算値が予測するアブレーショ ン閾値よりもかなり低い照射フルエンスで損傷が 起こることを示しています。そのため、実験結果を 理解するために、スパレーションモデルの改良が必 要となっています。図7は分子動力学シミュレーシ ョンから導出した、AIと Au の照射フルエンスに対 するアブレーション深さと溶融層の厚さを示した グラフです [9]。図にはアブレーションが起こらな いと予測されている低い照射フルエンスでも、表面 に溶融層が形成されることを示すグラフが描かれ ています。これらのことから、AI や Au に出現する 浅いナノメートサイズの損傷構造は、溶融した表面 層が飛び散ることで形成されたとも考えられてい ます。実験結果が示す損傷の面積は、シミュレーシ ョンが予測する溶融閾値を超えた照射フルエンス の領域と同程度になっていることが確認されてい ます [9]。

図 7 照射フルエンスと AI および Au 表面の損傷厚 との関係を示したグラフ [9]

最後に、軟X線レーザーの照射時に発生する加熱 物体からの発光観察と電子温度の見積もりを行っ たので、その結果を紹介します [13]。発光観察実験 では図3に示したカメラを用いて発光の観察を試み ました。軟X線レーザーをLiF、AI、そしてCuの各 表面に照射すると損傷構造は形成されましたが、表 面からの発光は観察されませんでした。この事実は、 軟X線レーザーによるスパレーションは、かなり低 い電子温度で起こる現象であることを示唆してい ます。明瞭な発光を伴わないことを利用して、軟X 線レーザーの照射によって加熱されるターゲット 表面の電子温度を見積もりました。結果を図8に示 します。条件としては、加熱された物質に黒体放射 と電子温度の時間発展にはガウス型の関数を仮定 しています。黒体輻射の継続時間を、最短で溶融層 が飛び散るであろうと思われる 100 ps とし(スパ レーション時の表面層の剥離を参考にした)、最長 で加熱部分の温度が周辺部と平衡に達するであろ う 1,000 ps と仮定した場合、電子温度は 0.4~0.7 eV となりました。低照射フルエンスの軟X線レー ザーによるアブレーション現象は、明瞭なプラズマ 発光を伴わない、低温での物理現象と言えます。

図 8 軟X線レーザーの照射によって加熱される 照射部の電子温度の見積もり [13]

4. まとめ

本稿では、軟X線レーザーのアブレーションにつ いて紹介しました。今後のアブレーション研究とし ては、損傷形成の時間発展や空間発展の観察を通し て、損傷の形成過程の解明を目指します。

アブレーション現象の利用として、表面加工への 展開が考えられます。実用化のためには大面積の加 エが必要ですが、軟X線レーザーを照射するだけで ナノ構造が出現することは大きなメリットと考え ています。また、軟X線レーザーの高い空間コヒー レンスを利用することで、干渉効果を利用した加工 への展開が考えられます。軟X線レーザーの発振波 長は可視・赤外レーザーに比べて短いことから、精 細なパターンを描画することに優れています。しか も、アブレーション閾値程度の低照射フルエンスに よって形成される損傷の深さがナノメートルスケ ールであることから、軟X線レーザーの特徴(短波) 長と高空間コヒーレンス)を最大限利用することで、 目的とするナノスケールの三次元構造をシングル ショットで形成することも考えられます。目下、軟 X線レーザーによる材料表面の直接ナノ加工実現 に向けた研究を展開中です。

謝辞

本章で紹介した研究成果は、Prof. Anatoly Faenov, Dr. Tatiana Pikuz, Prof. Nail Inogamov, Dr. Igor Skobelev 他のロシア科学アカデミーの皆様、奈良女 子大学の保智己教授の皆様のご協力により得られ たものです。特に、故 Faenov 大阪大学教授には研 究全般に渡り暖かいご支援とご協力を頂きました。 深く感謝申し上げます。

参考文献

- [1] 例えば、岡田龍雄、杉岡幸次、プラズマ・核融 合学会誌 **79** (2003) 1278
- [2] A. Ya. Faenov *et al.*, *Appl. Phys. Lett.* 94
 (2009) 231107
- [3] N. A. Inogamov *et al.*, *Appl. Phys. A* **101** (2010) 87
- [4] M. Ishino *et al.*, *J. Appl. Phys.* **109** (2011) 013504
- [5] M. Tanaka et al., Opt. Lett. 28 (2003) 1680
- [6] M. Nishikino *et al.*, *Phys. Rev. A* 68, (2003) 061802(R)
- [7] M. Nishikino et al., Appl. Opt. 47 (2008) 1129
- [8] M. Ishino et al., Appl. Phys. A 110 (2013) 179
- [9] S. V. Starikov *et al.*, *Appl. Phys. B* **116** (2014) 1005
- [10] N. A. Inogamov *et al.*, *Eng. Fail. Anal.* 47(2015) 328
- [11] N. A. Inogamov *et al.*, *Contrib. Plasma Phys.***49** (2009) 455
- [12] N. A. Inogamov *et al.*, *J. Phys.: Conf. Ser.* **510**(2014) 012041
- [13] M. Ishino *et al.*, J. Appl. Phys. **116** (2014)183302

第 14 回 X 線結像光学シンポジウムの会議報告

現地実行委員長

筑波大学 渡辺 紀生

X線結像光学研究会主催のX線結像光学シンポジ ウムを 2017 年 11 月 29 日、30 日に筑波大学、大学 会館国際会議室において開催致しました。本シンポ ジウムはX線結像光学の基盤技術及び応用に関する 最新の成果発表と研究者間の交流を深めるのが目的 で、今回は14回目となります。前回の名古屋大学で のシンポジウムで渡辺が実行委員長を仰せつかり、 実行委員(敬称略)として牧村(筑波大)、東口(宇 都宮大)、桜井(物材研)、三村(東大)、鈴木(東大)、 武市 (KEK)、兵藤 (KEK) を加えたメンバーで準備 に当たりました。シンポジウムは従来の形式に従っ て2日間の国内会議形式とし、会場とした筑波大学 との共催と致しました。また、科研費基盤研究(C) (代表者:篭島靖)から予稿集印刷費の援助を受け ました。

プログラムの決定は従来の方法を踏襲し、口頭発 表はすべて招待講演とし、ポスター発表と企業展示 を加えた三本立てと致しました。招待講演は幹事の 方々による推薦を頂いて候補者を決定し、講演を依 頼致しました。招待講演者の方々には、ご多忙の中 講演のご快諾を頂きました。この場をお借りしてお 礼を申し上げます。ポスター発表は会員から広く募 集を行い、X 線ミラーや多層膜等の要素技術を中心 とした様々な分野の申し込みを頂きました。最終的 に、招待講演23件、ポスター発表22件、企業展示 は5企業(内1企業は広告のみ)に参加して頂きま した。参加者数は84名となり、前回のシンポジウム から10名ほどの減でした。

企業展示は株式会社イマジスタ、ツジ電子株式会 社、株式会社ルクスレイ、神津精機株式会社の4社 に参加して頂きました。講演会場隣のコーヒーブレ ーク用の部屋に各社およそ2×2m²の空間をポスタ

ー展示で用いたものと同じパネル(幅0.9m、縦2.1 m)で仕切って展示用ブースとしました。また、株 式会社 ASICON には、企業広告の予稿集への印刷と 折込み広告の配布という形でご参加いただきました。

シンポジウム初日は 13:30 から開始し、X 線結像 光学研究会代表 篭島靖先生による開会の挨拶、及び 筑波大学数理物質系長 伊藤雅英先生による主催地 を代表しての挨拶の後、口頭講演を開始致しました。 最初はX線望遠鏡セッションで多重像干渉計、CCD、 SOI、ひとみ衛星のその後についての4件の講演が ありました。ひとみ衛星については打ち上げ後の不 幸な事故により短命に終わってしまいましたが、埼 玉大 田代先生により初期観測における卓越した成 果と2020年打ち上げ予定の0.3~12 keV軟X線撮 像・分光望遠鏡を搭載した X 線天文衛星代替機 (XARM) 計画が示されました。続くイメージングセ ッションでは、タイコグラフィー、パルス状コヒー レント X 線溶液散乱, 軌道角運動量の可視化, 高圧 その場X線ラミノグラフィーに関する4件の講演が あり、それぞれの手法の応用範囲を広げる最近の成 果が発表されました。

ロ頭講演終了後、16:55 から国際会議室前のホー ルに続くスペースでポスターセッションを行いまし た。ポスターでは新しいアイデアに基づくX線光学 素子と評価システム(長焦点深度 ZP, 多層膜 KB ミラー、タンデムウオルターミラー、準集光素子、 新型回折格子等)や高分解能検出器など、興味深い 発表がありました。続いて講演会場と同じ建物内に ある多目的ホールで懇親会を行いました。最初に前 代表 柳原先生の挨拶と木下先生の乾杯の音頭で開 始し、最後に2代前の代表 青木先生の締めの挨拶で 終了するまで、食事とお酒を楽しみながらお互いの 交流を深めることが出来ました。懇親会への参加者 は、学生アルバイトも含めて 60 名でした。

2日目は9:30からロ頭講演を開始し、最初に光学 素子関係、Advanced KB ミラー,回転楕円ミラー, アポダイゼーションFZPについて3件の講演があり ました。続くイメージング関係のセッションでは、 ERATO プロジェクトの進展とその Talbot-Lau 干渉 計を顕微鏡に適用した位相 CT の 2 件、走査型透過 軟X線顕微鏡2件の計4件の講演が行われました。 午後の最初のセッションは EUV 顕微鏡、コヒーレン ト回折イメージングによるマスク検査装置、電子顕 微鏡用軟 X 線分光器、高次高調波に基づく微小コヒ ーレント軟X線源に関する4件の講演が行われまし た。最後のセッションでは、X線レーザーSACLAが もたらした大強度フェムト秒パルス X線による新し い科学、利用技術として分割遅延光学系、フェムト 秒 EUV パルスによる多層膜損傷及び有機薄膜アブ レーションについて 4 件の講演が行われ、SACLA の威力を示す最近の成果が示されました。

なお、2 日目の昼食時に幹事会が開かれ、今回の 決算(予定)の報告をしました。会場費が無料であ ったこと、企業展示による収入などで若干の余裕が 出たことを報告しました。また、前回にも話題にな った開催形式(日本光学会などとの共催)について も議論しましたが、結論は得られませんでした。

本シンポジウムでは、ロ頭講演・ポスター講演そ れぞれの講演内容を 1~2 ページにまとめたフルカ ラー83 ページの予稿集を作成致しました。残部が少 しありますので、ご希望の方がいらっしゃいました ら筆者またはニュースレター編集部までご連絡下さ い。また、シンポジウムプログラムの詳細について は、(https://www.xio2017.info/)のシンポジウムホー ムページをご参照下さい。次回のシンポジウムは 2019 年に東北大学 百生敦先生を実行委員長として 開催が予定されています。

本シンポジウムの開催には、準備・運営に際して 多くの方々にご協力頂きました。特別顧問 青木貞雄 先生には準備期間を通して過去のつくばでの開催経 験を踏まえた的確なご指摘・ご指導を頂き、当日は シンポジウムの運営についても助けて頂きました。 ここに、ご協力頂いた全ての関係者の皆様にお礼申 し上げます。

大学会館国際会議室における講演の様子

[The 13th International Conference on Synchrotron Radiation Instrumentation]

会期:平成 30 年 6 月 10 日 ~ 15 日

場所: Taipei International Convention Center, Taipei, Taiwan

[The 14th International Conference on X-ray Microscopy (XRM2018)]

会期:平成 30 年 8 月 19 日 ~ 24 日

場所: Saskatoon, Saskatchewan, Canada

【メーリングリスト(登録メールアドレスの変更などについて)】

本ニューズレターは原則、メーリングリスト(<u>xio-nl@prec.eng.osaka-u.ac.jp</u>)によるメール配信と なっております。メールアドレス変更などの際には、お手数ですが、編集部 (<u>xioedit@prec.eng.osaka-u.ac.jp</u>)までご連絡ください。メーリングリストは、研究会のお知らせなど、 会員全員に情報を配信したいときなどにも便利なので、積極的にご活用ください。

X 線結像光学ニューズレター ^発 No.47(2018 年 4 月) _編	発行	X 線結像光学研究会 (代表 兵庫県立大 篭島靖)	
	編集部	山内和人(大阪大)、齋藤彰(大阪大)、矢代航(東北大)、	
		松本浩典(名古屋大)、東口武史(宇都宮大) E-mail: xioedit@prec.eng.osaka-u.ac.jp	

『平成 30 年度 X 線結像光学研究会運営組織』

·代表者 : 篭島 靖 (兵庫県立大)

幹事:

- 事務局担当者:高山 裕貴(兵庫県立大)
- ·編集局責任者:山内 和人 (大阪大)

・編集局委員 : 齋藤 彰 (大阪大)、矢代 航 (東北大)、松本 浩典 (名古屋大)、 東口 武史 (宇都宮大)、篭島 靖 (兵庫県立大)、豊田 光紀 (東北大)

伊藤	敦 (東海大)	太田	俊明(立命館大)	大東 琢治(分子研)
篭島	靖(兵庫県立大)	加道	雅孝(原研)	木下 博雄 (兵庫県立大)
國枝	秀世(名古屋大)	鈴木	芳生(東京大)	竹内 晃久(JASRI)
田原	譲(名古屋大)	常深	博(大阪大)	難波 義治(中部大)
西野	吉則(北海道大)	西村	博明(大阪大)	羽多野 忠(東北大)
兵藤	一行(KEK)	牧村	哲也(筑波大)	百生、敦(東北大)
森田	繁(核融合研)	矢橋	牧名(理研)	山内和人(大阪大)
渡辺	紀生(筑波大)			

特別顧問:
 波岡 武(東北大名誉教授) 青木 貞雄(筑波大名誉教授) 柳原 美廣(東北大名誉教授)